What's the easiest way to compute a 3x3 matrix inverse?
I'm just looking for a short code snippet that'll do the trick for non-singular matrices, possibly using Cramer's rule. It doesn't need to be highly optimized. I'd prefer simplicity over speed. I'd rather not link in additional libraries.
Why don't you try to code it yourself? Take it as a challenge. :)
For a 3×3 matrix
(source: wolfram.com)
the matrix inverse is
(source: wolfram.com)
I'm assuming you know what the determinant of a matrix |A| is.
Images (c) Wolfram|Alpha and mathworld.wolfram (06-11-09, 22.06)
Here's a version of batty's answer, but this computes the correct inverse. batty's version computes the transpose of the inverse.
// computes the inverse of a matrix m
double det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));
double invdet = 1 / det;
Matrix33d minv; // inverse of matrix m
minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;