Pointer to class data member "::*"


Question

I came across this strange code snippet which compiles fine:

class Car
{
    public:
    int speed;
};

int main()
{
    int Car::*pSpeed = &Car::speed;
    return 0;
}

Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?

1
217
5/23/2019 9:44:40 AM

Accepted Answer

It's a "pointer to member" - the following code illustrates its use:

#include <iostream>
using namespace std;

class Car
{
    public:
    int speed;
};

int main()
{
    int Car::*pSpeed = &Car::speed;

    Car c1;
    c1.speed = 1;       // direct access
    cout << "speed is " << c1.speed << endl;
    c1.*pSpeed = 2;     // access via pointer to member
    cout << "speed is " << c1.speed << endl;
    return 0;
}

As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.

Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:

void Apply( SomeClass * c, void (SomeClass::*func)() ) {
    // do hefty pre-call processing
    (c->*func)();  // call user specified function
    // do hefty post-call processing
}

The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.

171
7/31/2015 8:57:28 PM

This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:

#include <iostream>

class bowl {
public:
    int apples;
    int oranges;
};

int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
    int count = 0;
    for (bowl * iterator = begin; iterator != end; ++ iterator)
        count += iterator->*fruit;
    return count;
}

int main()
{
    bowl bowls[2] = {
        { 1, 2 },
        { 3, 5 }
    };
    std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
    std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
    return 0;
}

The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.


Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Icon