How can I add reflection to a C++ application?


Question

I'd like to be able to introspect a C++ class for its name, contents (i.e. members and their types) etc. I'm talking native C++ here, not managed C++, which has reflection. I realise C++ supplies some limited information using RTTI. Which additional libraries (or other techniques) could supply this information?

1
235
6/21/2010 4:10:55 AM

Accepted Answer

Ponder is a C++ reflection library, in answer to this question. I considered the options and decided to make my own since I couldn't find one that ticked all my boxes.

Although there are great answers to this question, I don't want to use tonnes of macros, or rely on Boost. Boost is a great library, but there are lots of small bespoke C++0x projects out that are simpler and have faster compile times. There are also advantages to being able to decorate a class externally, like wrapping a C++ library that doesn't (yet?) support C++11. It is fork of CAMP, using C++11, that no longer requires Boost.

4
5/17/2016 9:05:48 AM

What you need to do is have the preprocessor generate reflection data about the fields. This data can be stored as nested classes.

First, to make it easier and cleaner to write it in the preprocessor we will use typed expression. A typed expression is just an expression that puts the type in parenthesis. So instead of writing int x you will write (int) x. Here are some handy macros to help with typed expressions:

#define REM(...) __VA_ARGS__
#define EAT(...)

// Retrieve the type
#define TYPEOF(x) DETAIL_TYPEOF(DETAIL_TYPEOF_PROBE x,)
#define DETAIL_TYPEOF(...) DETAIL_TYPEOF_HEAD(__VA_ARGS__)
#define DETAIL_TYPEOF_HEAD(x, ...) REM x
#define DETAIL_TYPEOF_PROBE(...) (__VA_ARGS__),
// Strip off the type
#define STRIP(x) EAT x
// Show the type without parenthesis
#define PAIR(x) REM x

Next, we define a REFLECTABLE macro to generate the data about each field(plus the field itself). This macro will be called like this:

REFLECTABLE
(
    (const char *) name,
    (int) age
)

So using Boost.PP we iterate over each argument and generate the data like this:

// A helper metafunction for adding const to a type
template<class M, class T>
struct make_const
{
    typedef T type;
};

template<class M, class T>
struct make_const<const M, T>
{
    typedef typename boost::add_const<T>::type type;
};


#define REFLECTABLE(...) \
static const int fields_n = BOOST_PP_VARIADIC_SIZE(__VA_ARGS__); \
friend struct reflector; \
template<int N, class Self> \
struct field_data {}; \
BOOST_PP_SEQ_FOR_EACH_I(REFLECT_EACH, data, BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))

#define REFLECT_EACH(r, data, i, x) \
PAIR(x); \
template<class Self> \
struct field_data<i, Self> \
{ \
    Self & self; \
    field_data(Self & self) : self(self) {} \
    \
    typename make_const<Self, TYPEOF(x)>::type & get() \
    { \
        return self.STRIP(x); \
    }\
    typename boost::add_const<TYPEOF(x)>::type & get() const \
    { \
        return self.STRIP(x); \
    }\
    const char * name() const \
    {\
        return BOOST_PP_STRINGIZE(STRIP(x)); \
    } \
}; \

What this does is generate a constant fields_n that is number of reflectable fields in the class. Then it specializes the field_data for each field. It also friends the reflector class, this is so it can access the fields even when they are private:

struct reflector
{
    //Get field_data at index N
    template<int N, class T>
    static typename T::template field_data<N, T> get_field_data(T& x)
    {
        return typename T::template field_data<N, T>(x);
    }

    // Get the number of fields
    template<class T>
    struct fields
    {
        static const int n = T::fields_n;
    };
};

Now to iterate over the fields we use the visitor pattern. We create an MPL range from 0 to the number of fields, and access the field data at that index. Then it passes the field data on to the user-provided visitor:

struct field_visitor
{
    template<class C, class Visitor, class I>
    void operator()(C& c, Visitor v, I)
    {
        v(reflector::get_field_data<I::value>(c));
    }
};


template<class C, class Visitor>
void visit_each(C & c, Visitor v)
{
    typedef boost::mpl::range_c<int,0,reflector::fields<C>::n> range;
    boost::mpl::for_each<range>(boost::bind<void>(field_visitor(), boost::ref(c), v, _1));
}

Now for the moment of truth we put it all together. Here is how we can define a Person class that is reflectable:

struct Person
{
    Person(const char *name, int age)
        :
        name(name),
        age(age)
    {
    }
private:
    REFLECTABLE
    (
        (const char *) name,
        (int) age
    )
};

Here is a generalized print_fields function using the reflection data to iterate over the fields:

struct print_visitor
{
    template<class FieldData>
    void operator()(FieldData f)
    {
        std::cout << f.name() << "=" << f.get() << std::endl;
    }
};

template<class T>
void print_fields(T & x)
{
    visit_each(x, print_visitor());
}

An example of using the print_fields with the reflectable Person class:

int main()
{
    Person p("Tom", 82);
    print_fields(p);
    return 0;
}

Which outputs:

name=Tom
age=82

And voila, we have just implemented reflection in C++, in under 100 lines of code.


Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Icon