# What are the complexity guarantees of the standard containers?

### Question

Apparently ;-) the standard containers provide some form of guarantees.

What type of guarantees and what exactly are the differences between the different types of container?

Working from the SGI page (about STL) I have come up with this:

``````Container Types:
================
Container:
Forward Container
Reverse Container
Random Access Container
Sequence
Front Insert Sequence
Back  Insert Sequence
Associative Container
Simple   Associative Container
Pair     Associative Container
Sorted   Associative Container
Multiple Associative Container

Container Types mapped to Standard Containers
=============================================

std::vector:    Sequence    Back        Sequence                    Forward/Reverse/Random Container
std::deque:     Sequence    Front/Back  Sequence                    Forward/Reverse/Random Container
std::list:      Sequence    Front/Back  Sequence                    Forward/Reverse Container
std::set:       Sorted/Simple/Unique    Associative Container       Forward Container
std::map:       Sorted/Pair/Unique      Associative Container       Forward Container
std::multiset:  Sorted/Simple/Multiple  Associative Container       Forward Container
std::multimap:  Sorted/Pair/Multiple    Associative Container       Forward Container

Container Guarantees:
=====================

Simp
or
For   Rev  Rand        Front  Back  Assoc        Sort   Mult
Cont: Cont: Cont Cont: Sequ: Sequ:  Sequ: Cont:        Cont:  Cont:
Copy    Const:      O(n)
Fill    Const:                             O(n)
begin()             O(1)
end()               O(1)
rbegin()                        O(1)
rend()                          O(1)
front()                                    O(1)
push_front()                                     O(1)
pop_front()                                      O(1)
push_back()                                             O(1)
pop_back()                                              O(1)
Insert()                                                                          O(ln(n))
Insert: fill                               O(n)
Insert: range                              O(n)                                   O(kln(n)+n)
size()              O(n)
swap()              O(1)
erase key                                                     O(ln(n))
erase element                                                 O(1)
erase range                                                   O(ln(n)+S)
count()                                                       O(log(n)+k)
find()                                                        O(ln(n))
equal range                                                   O(ln(n))
Lower Bound/Upper Bound                                                    O(ln(n))
Equality                  O(n)
InEquality                O(n)
Element Access                       O(1)
``````
1
152
3/21/2018 4:35:53 AM

I found the nice resource Standard C++ Containers. Probably this is what you all looking for.

VECTOR

Constructors

``````vector<T> v;              Make an empty vector.                                     O(1)
vector<T> v(n);           Make a vector with N elements.                            O(n)
vector<T> v(n, value);    Make a vector with N elements, initialized to value.      O(n)
vector<T> v(begin, end);  Make a vector and copy the elements from begin to end.    O(n)
``````

Accessors

``````v[i]          Return (or set) the I'th element.                        O(1)
v.at(i)       Return (or set) the I'th element, with bounds checking.  O(1)
v.size()      Return current number of elements.                       O(1)
v.empty()     Return true if vector is empty.                          O(1)
v.begin()     Return random access iterator to start.                  O(1)
v.end()       Return random access iterator to end.                    O(1)
v.front()     Return the first element.                                O(1)
v.back()      Return the last element.                                 O(1)
v.capacity()  Return maximum number of elements.                       O(1)
``````

Modifiers

``````v.push_back(value)         Add value to end.                                                O(1) (amortized)
v.insert(iterator, value)  Insert value at the position indexed by iterator.                O(n)
v.pop_back()               Remove value from end.                                           O(1)
v.assign(begin, end)       Clear the container and copy in the elements from begin to end.  O(n)
v.erase(iterator)          Erase value indexed by iterator.                                 O(n)
v.erase(begin, end)        Erase the elements from begin to end.                            O(n)
``````

For other containers, refer to the page.

60
12/20/2015 12:11:43 PM

I'm not aware of anything like a single table that lets you compare all of them in at one glance (I'm not sure such a table would even be feasible).

Of course the ISO standard document enumerates the complexity requirements in detail, sometimes in various rather readable tables, other times in less readable bullet points for each specific method.

Also the STL library reference at http://www.cplusplus.com/reference/stl/ provides the complexity requirements where appropriate.